If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2700^2=(x+20)(x-40)
We move all terms to the left:
2700^2-((x+20)(x-40))=0
We add all the numbers together, and all the variables
-((x+20)(x-40))+7290000=0
We multiply parentheses ..
-((+x^2-40x+20x-800))+7290000=0
We calculate terms in parentheses: -((+x^2-40x+20x-800)), so:We get rid of parentheses
(+x^2-40x+20x-800)
We get rid of parentheses
x^2-40x+20x-800
We add all the numbers together, and all the variables
x^2-20x-800
Back to the equation:
-(x^2-20x-800)
-x^2+20x+800+7290000=0
We add all the numbers together, and all the variables
-1x^2+20x+7290800=0
a = -1; b = 20; c = +7290800;
Δ = b2-4ac
Δ = 202-4·(-1)·7290800
Δ = 29163600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29163600}=\sqrt{3600*8101}=\sqrt{3600}*\sqrt{8101}=60\sqrt{8101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-60\sqrt{8101}}{2*-1}=\frac{-20-60\sqrt{8101}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+60\sqrt{8101}}{2*-1}=\frac{-20+60\sqrt{8101}}{-2} $
| 8y-8=12 | | -3y+2=17y+22 | | –20w−–20w+9w=9 | | 3n+6=21;n= | | 300=400-16t^2 | | 7p+7=21 | | 50(x)=300+10.5x | | 0.40x=320 | | 7x3+4x=3 | | 40x=320 | | 4x+130=x | | 21r+2=42r-19 | | -2x^2+3x+19=0 | | 12x2-x-6=0 | | 25=5(y-90) | | 30+2v=7v | | 3(w-12)=15 | | u+41/8=9 | | 3x–9+4xx=4 | | 15x2-11x-12=0 | | 12y+10=180 | | 8.7+3(8.7)+b=54.6 | | 2k(k+3)=6k | | x/7=14/49 | | 6p+3=2p-14 | | 4(8-2x)=256 | | 36x-2=35x | | 4x3+6x2−26x−14=0 | | 1.7xx=4.25 | | 215.00=2000.00+2000.00r | | (x+6)^2-16=0(x+6)2−16=0 | | 7*6=x-4 |